Affiliation:
1. Academy of Maritime Education and Training, Chennai, India
Abstract
Autonomous navigation is achieved by training or programming the ship with the stored data about the vessel behavior in various sailing environment. The autonomous behaviour relies on intelligent analytics based on machine learning algorithms. As a major advance in machine learning, the deep learning approach is becoming a powerful technique for autonomy. The deep learning methodologies are applied in various fields in the maritime industry such as detecting anomalies, ship classification, collision avoidance, risk detection of cyber attacks, navigation in ports and so on. The present paper reviews on various methods available in the literature for vessel autonomy and their applications in ship navigation. The focus of the work is to illustrate the advantages of deep learning approach over the machine learning and other traditional methods.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献