Diagnosis of oral cancer using deep learning algorithms

Author:

Dávila Olivos Mayra AlejandraORCID,Herrera Del Águila Henry MiguelORCID,Santos López Félix MelchorORCID

Abstract

The aim of this study was to use deep learning for the automatic diagnosis of oral cancer, employing images of the lips, mucosa, and oral cavity. A deep convolutional neural network (CNN) model, augmented with data, was proposed to enhance oral cancer diagnosis. We developed a Mobile Net deep CNN designed to detect and classify oral cancer in the lip, mucosa, and oral cavity areas. The dataset comprised 131 images, including 87 positive and 44 negative cases. Additionally, we expanded the dataset by varying cropping, focus, rotation, brightness, and flipping. The diagnostic performance of the proposed CNN was evaluated by calculating accuracy, precision, recall, F1 score, and area under the curve (AUC) for oral cancer. The CNN achieved an overall diagnostic accuracy of 90.9% and an AUC of 0.91 with the dataset for oral cancer. Despite the limited number of images of lips, mucosa, and oral cavity, the CNN method developed for the automatic diagnosis of oral cancer demonstrated high accuracy, precision, recall, F1 score, and AUC when augmented with data.

Publisher

Salesian Polytechnic University of Ecuador

Reference47 articles.

1. L. A. Zanella-Calzada, C. E. Galván-Tejada, N. M. Chávez-Lamas, J. Rivas-Gutierrez, R. Magallanes-Quintanar, J. M. Celaya-Padilla, J. I. Galván-Tejada, and H. Gamboa-Rosales, "Deep artificial neural networks for the diagnostic of caries using socioeconomic and nutritional features as determinants: Data from nhanes 2013-2014," Bioengineering, vol. 5, no. 2, 2018. [Online]. Available: https://doi.org/10.3390/bioengineering5020047

2. J. Shan, R. Jiang, X. Chen, Y. Zhong, W. Zhang, L. Xie, J. Cheng, and H. Jiang, "Machine learning predicts lymph node metastasis in early-stage oral tongue squamous cell carcinoma," Journal of Oral and Maxillofacial Surgery, vol. 78, no. 12, pp. 2208-2218, 2020. [Online]. Available: https://doi.org/10.1016/j.joms.2020.06.015

3. A. M. Bur, A. Holcomb, S. Goodwin, J. Woodroof, O. Karadaghy, Y. Shnayder, K. Kakarala, J. Brant, and M. Shew, "Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma," Oral Oncology, vol. 92, pp. 20-25, 2019. [Online]. Available: https://doi.org/10.1016/j.oraloncology.2019.03.011

4. O. Kwon, T.-H. Yong, S.-R. Kang, J.-E. Kim, K.-H. Huh, M.-S. Heo, S.-S. Lee, S.-C. Choi, and W.-J. Yi, "Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network," Dentomaxillofacial Radiology, vol. 49, no. 8, p. 20200185, Dec 2020. [Online]. Available: https://doi.org/10.1259/dmfr.20200185

5. X. Zhang, Y. Liang, W. Li, C. Liu, D. Gu, W. Sun, and L. Miao, "Development and evaluation of deep learning for screening dental caries from oral photographs," Oral Diseases, vol. 28, no. 1, pp. 173-181, 2022. [Online]. Available: https://doi.org/10.1111/odi.13735

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3