Prediction of Arrhythmias and Acute Myocardial Infarctions using Machine Learning

Author:

Patiño DarwinORCID,Medina JorgeORCID,Silva RicardoORCID,Guijarro AlfonsoORCID,Rodríguez JoséORCID

Abstract

Cardiovascular diseases such as Acute Myocardial Infarction is one of the 3 leading causes of death in the world according to WHO data, in the same way cardiac arrhythmias are very common diseases today, such as atrial fibrillation. The ECG electrocardiogram is the means of cardiac diagnosis that is used in a standardized way throughout the world. Machine learning models are very helpful in classification and prediction problems. Applied to the field of health, ANN, and CNN artificial and neural networks, added to tree-based models such as XGBoost, are of vital help in the prevention and control of heart disease. The present study aims to compare and evaluate learning based on ANN, CNN and XGBoost algorithms by using the Physionet MIT-BIH and PTB ECG databases, which provide ECGs classified with Arrhythmias and Acute Myocardial Infarctions respectively. The learning times and the percentage of Accuracy of the 3 algorithms in the 2 databases are compared separately, and finally the data are crossed to compare the validity and safety of the learning prediction.

Publisher

Salesian Polytechnic University of Ecuador

Subject

General Medicine

Reference46 articles.

1. [1] K.-Y. Chin, K.-F. Lee, and Y.-L. Chen, "Using an interactive ubiquitous learning system to enhance authentic learning experiences in a cultural heritage course," Interactive Learning Environments, vol. 26, no. 4, pp. 444-459, 2018. [Online]. Available: https://doi.org/10.1080/10494820.2017.1341939

2. [2] F. P. Mota, F. P. de Toledo, V. Kwecko, S. Devincenzi, P. Núñez, and S. S. da C. Botelho, "Ubiquitous learning: Asystematic review," in 2019 IEEE Frontiers in Education Conference (FIE), 2019, pp. 1-9. [Online]. Available: https://doi.org/10.1109/FIE43999.2019.9028361

3. [3] Y. Guo and G. Y. H. Lip, "Beyond atrial fibrillation detection: how digital tools impact the care of patients with atrial fibrillation," European Journal of Internal Medicine, vol. 93, pp. 117-118, 2021. [Online]. Available: https://doi.org/10.1016/j.ejim.2021.08.026

4. [4] Y. Guo, H. Wang, H. Zhang, T. Liu, Z. Liang, Y. Xia, L. Yan, Y. Xing, H. Shi, S. Li, Y. Liu, F. Liu, M. Feng, Y. Chen, G. Y. H. Lip, and M.A.F.A. II Investigators, "Mobile photoplethysmographic technology to detect atrial fibrillation," Journal of the American College of Cardiology, vol. 74, no. 19, pp. 2365-2375, Sep. 2019. [Online]. Available: https://doi.org/10.1016/j.jacc.2019.08.019

5. [5] M. V. Perez, K. W. Mahaffey, H. Hedlin, J. S. Rumsfeld, A. Garcia, T. Ferris, V. Balasubramanian, A. M. Russo, A. Rajmane, L. Cheung, G. Hung, J. Lee, P. Kowey, N. Talati, D. Nag, S. E. Gummidipundi, A. Beatty, M. T. Hills, S. Desai, C. B. Granger, M. Desai, and M. P. Turakhia, "Large-scale assessment of a smartwatch to identify atrial fibrillation," New England Journal of Medicine, vol. 381, no. 20, pp. 1909-1917, 2019, pMID: 31722151. [Online]. Available: https://doi.org/10.1056/NEJMoa1901183

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3