Recognition of Geometric Figures and Determination of Their Characteristics by Means of Computer Vision

Author:

Golovin Oleksandr1

Affiliation:

1. V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kyiv

Abstract

Introduction. Many computer vision applications often use procedures for recognizing various shapes and estimating their dimensional characteristics. The entire pipeline of such processing consists of several stages, each of which has no clearly defined boundaries. However, it can be divided into low, medium, and high-level processes. Low-level processes only deal with primitive operations such as preprocessing to reduce noise, enhance contrast, or sharpen images. The processes of this level are characterized by the fact that there are images at the input and output. Image processing at the middle level covers tasks such as segmentation, description of objects, and their compression into a form convenient for computer processing. Middle-level processes are characterized by the presence of images only at the input, and only signs and attributes extracted from images are received at the output. High-level processing involves “understanding” a set of recognized objects and recognizing their interactions. Using the example of the developed software models for recognizing figures and estimating their characteristics, it is shown that the image processing process is reduced to transforming spatial image data into metadata, compressing the amount of information, which leads to a significant increase in the importance of data. This indicates that at the input of the middle level, the image should be as informative as possible (with high contrast, no noise, artifacts, etc.) because after the transformation of the spatial image data into metadata, no further the procedures are not able to correct the data obtained by the video sensors in the direction of improving or increasing the information content. Recognition of figures in an image can be realized quite efficiently through the use of the procedure for determining the contours of figures. To do this, you need to determine the boundaries of objects and localize them in the image, often the first step for procedures such as separating objects from the background, image segmentation, detection and recognition of various objects, etc. The purpose of the article is to study the image processing pipeline from the moment of image fixation to the recognition of a certain set of figures (for example, geometric shapes, such as a triangle, quadrilateral, etc.) in an image, the development of software models for recognizing figures in an image, determining the center of mass figures by means of computer vision. Results. We proposed and tested some variants of nonlinear estimating problem. The properties of such problems depend on value of regulating parameter. The dependence of estimation on value of parameter was studied. It was defined a range for parameter's value for which estimating problem gives adequate result for initial task. Numerical examples show how much volume of calculations reduces when using a dynamic branching tree. Conclusions. The results obtained can be used in many applications of computer vision, for example, counting objects in a scene, estimating their parameters, estimating the distance between objects in a scene, etc. Keywords: contour, segmentation, image binarization, computer vision, histogram.

Publisher

V.M. Glushkov Institute of Cybernetics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3