Genetic Algorithms as Computational Methods for Finite-Dimensional Optimization

Author:

Gulayeva Nataliya1ORCID,Shylo Volodymyr2,Glybovets Mykola1ORCID

Affiliation:

1. National University of Kyiv-Mohyla Academy

2. V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kyiv

Abstract

Introduction. As early as 1744, the great Leonhard Euler noted that nothing at all took place in the universe in which some rule of maximum or minimum did not appear [12]. Great many today’s scientific and engineering problems faced by humankind are of optimization nature. There exist many different methods developed to solve optimization problems, the number of these methods is estimated to be in the hundreds and continues to grow. A number of approaches to classify optimization methods based on various criteria (e.g. the type of optimization strategy or the type of solution obtained) are proposed, narrower classifications of methods solving specific types of optimization problems (e.g. combinatorial optimization problems or nonlinear programming problems) are also in use. Total number of known optimization method classes amounts to several hundreds. At the same time, methods falling into classes far from each other may often have many common properties and can be reduced to each other by rethinking certain characteristics. In view of the above, the pressing task of the modern science is to develop a general approach to classify optimization methods based on the disclosure of the involved search strategy basic principles, and to systematize existing optimization methods. The purpose is to show that genetic algorithms, usually classified as metaheuristic, population-based, simulation, etc., are inherently the stochastic numerical methods of direct search. Results. Alternative statements of optimization problem are given. An overview of existing classifications of optimization problems and basic methods to solve them is provided. The heart of optimization method classification into symbolic (analytical) and numerical ones is described. It is shown that a genetic algorithm scheme can be represented as a scheme of numerical method of direct search. A method to reduce a given optimization problem to a problem solvable by a genetic algorithm is described, and the class of problems that can be solved by genetic algorithms is outlined. Conclusions. Taking into account the existence of a great number of methods solving optimization problems and approaches to classify them it is necessary to work out a unified approach for optimization method classification and systematization. Reducing the class of genetic algorithms to numerical methods of direct search is the first step in this direction. Keywords: mathematical programming problem, unconstrained optimization problem, constrained optimization problem, multimodal optimization problem, numerical methods, genetic algorithms, metaheuristic algorithms.

Publisher

V.M. Glushkov Institute of Cybernetics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3