Optimal Numerical Integration

Author:

Zadiraka V.K.1ORCID,Luts L.V.1ORCID,Shvidchenko I.V.1ORCID

Affiliation:

1. V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine

Abstract

Introduction. In many applied problems, such as statistical data processing, digital filtering, computed tomography, pattern recognition, and many others, there is a need for numerical integration, moreover, with a given (often quite high) accuracy. Classical quadrature formulas cannot always provide the required accuracy, since, as a rule, they do not take into account the oscillation of the integrand. In this regard, the development of methods for constructing optimal in accuracy (and close to them) quadrature formulas for the integration of rapidly oscillating functions is rather important and topical problem of computational mathematics. The purpose of the article is to use the example of constructing optimal in accuracy (and close to them) quadrature formulas for calculating integrals for integrands of various degrees of smoothness and for oscillating factors of different types and constructing a priori estimates of their total error, as well as applying to them of the theory of testing the quality of algorithms-programs to create a theory of optimal numerical integration. Results. The optimal in accuracy (and close to them) quadrature formulas for calculating the Fourier transform, wavelet transforms, and Bessel transform were constructed both in the classical formulation of the problem and for interpolation classes of functions corresponding to the case when the information operator about the integrand is given by a fixed table of its values. The paper considers a passive pure minimax strategy for solving the problem. Within the framework of this strategy, we used the method of “caps” by N. S. Bakhvalov and the method of boundary functions developed at the V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine. Great attention is paid to the quality of the error estimates and the methods to obtain them. The article describes some aspects of the theory of algorithms-programs testing and presents the results of testing the constructed quadrature formulas for calculating integrals of rapidly oscillating functions and estimates of their characteristics. The problem of determining the ranges of admissible values of control parameters of programs for calculating integrals with the required accuracy, as well as their best values for integration with the minimum possible error, is considered for programs calculating a priori estimates of characteristics. Conclusions. The results obtained make it possible to create a theory of optimal integration, which makes it possible to reasonably choose and efficiently use computational resources to find the value of the integral with a given accuracy or with the minimum possible error. Keywords: quadrature formula, optimal algorithm, interpolation class, rapidly oscillating function, quality testing.

Publisher

V.M. Glushkov Institute of Cybernetics

Subject

General Medicine

Reference16 articles.

1. Sergienko I.V., Lytvyn O.M. New information operators in mathematical modeling. K.: Naukova dumka, 2018. 550 p. (in Ukrainian)

2. Bakhvalov N.S. Numerical methods. M.: Nauka, 1973. 1. 632 p. (in Russian)

3. Zadiraka V.K., Ivanov V.V. The issues of calculations optimization. K.: Obshhyestvo «Znanije» Ukrainskoj SSR, 1979. 36 p. (in Russian)

4. Ivanov V.V. Computer Computation Methods: A Reference Guide. K.: Naukova dumka, 1986. 584 p. (in Russian)

5. Bakhvalov N.S. On the optimality of linear methods for operator approximation in convex classes of functions. Zhurnal Vychislityel'noj Matyematiki i Matyematichyeskoj Fiziki. 1971. 11 (4). P. 244–249. (in Russian) https://doi.org/10.1016/0041-5553(71)90017-6

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Invariants of optimal integration of rapidly oscillatory functions;Physico-mathematical modelling and informational technologies;2021-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3