Mathematical Model and Solution Algorithm for Virtual Localization Problem

Author:

Plankovskyy Sergiy1ORCID,Tsegelnyk Yevgen1ORCID,Pankratov Oleksandr2ORCID,Romanova Tetyana2ORCID,Maximov Serhiy2,Kombarov Volodymyr1ORCID

Affiliation:

1. O.M. Beketov National University of Urban Economy in Kharkiv, Ukraine

2. Anatolii Pidhornyi Institute of Mechanical Engineering Problems of the NAS of Ukraine, Kharkiv

Abstract

Introduction. The optimization placement problem refereed to virtual localization is studied. This problem is motivated by the need to optimize the production of parts from near-net shape blanks using CNC machines. The known algorithms for solving the virtual localization problem come down to determining the location parameters of the part CAD model inside the point cloud obtained by scanning the workpiece surface. The main disadvantage of such algorithms is the use of criteria that are insensitive to the intersection of the surfaces of the part and the workpiece. In order to prevent such errors in production conditions, it is necessary to involve a human operator in conducting operations based on virtual localization. In this way, the virtual localization problem of complex shape objects is of paramount importance. The purpose of the paper is to propose a new approach for solving the virtual localization problem. Results. A new mathematical model of the virtual localization problem based on the phi-function technique is proposed. We developed a solution strategy that combines algorithm of generating feasible starting points with non-linear optimization procedure. The testing of the proposed approach was carried out for a two-dimensional case. The computational results illustrated with graphical illustrations are provided that show the efficiency of the proposed algorithm. Conclusions. The obtained results show that the use of the phi-functions technique prevents the occurrence of erroneous solutions with the intersection of the workpiece surfaces. An algorithm for solving the problem of virtual localization in a two-dimensional formulation for the case when the part and the workpiece are convex polygons has been developed. For the considered test problems, the solution time did not exceed 2.5 sec, which fully meets the requirements of industrial use. In the future, it is planned to extend the proposed method to the cases when the CAD model of the part has an arbitrary shape and is formed by Boolean operations on geometric primitives. Keywords: polygonal domain, phi-function technique, virtual localization, CNC machining.

Publisher

V.M. Glushkov Institute of Cybernetics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3