On Shor's r-Algorithm for Problems with Constraints

Author:

Norkin Vladimir1ORCID,Kozyriev Anton2

Affiliation:

1. V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kyiv,

2. National Technical University of Ukraine "Ihor Sikorsky Kyiv Polytechnic Institute", Kyiv

Abstract

Introduction. Nonsmooth optimization problems arise in a wide range of applications, including engineering, finance, and deep learning, where activation functions often have discontinuous derivatives, such as ReLU. Conventional optimization algorithms developed primarily for smooth problems face difficulties when applied to nonsmooth contexts due to discontinuities and other associated irregularities. Possible approaches to overcome these problems include smoothing of functions and applying non-smooth optimization techniques. In particular, Shor's r-algorithm (Shor, Zhurbenko (1971), Shor (1979)) with space stretching in the direction of the difference of two subsequent subgradients is a competitive non-smooth optimization method (Bagirov et al. (2014)). However, the original r-algorithm is designed to minimize unconstrained convex functions. The goal of the work. The standard technique for applying this algorithm to problems with constraints consists in the use of exact non-smooth penalty functions (Eremin (1967), Zangwill (1967)). At the same time, it is necessary to correctly choose (quite large) the penalty coefficient of the penalty functions. Norkin (2020, 2022), Galvan et al. (2021) propose the so-called projective exact penalty functions method, which theoretically does not require choice of the penalty coefficient. The purpose of the present work is to study an applicability of the new exact projective non-smooth penalty functions method for solving conditional problems of non-smooth optimization by Shor's r-algorithm. The results. In this paper, the original optimization problem with convex constraints is first transformed into an unconstrained problem by the projective penalty function method, and then the r-algorithm is used to solve the transformed problem. The results of testing this approach on problems with linear constraints using a program implemented in Matlab are presented. The results of the present study show that the standard method of non-smooth penalties combined with Shor's r-algorithm is fast, due to the use of the provided program to calculate the subgradients, but it requires the correct selection of the penalty parameter. The projective penalty method is slow because in this study it uses finite differences to calculate the gradients, but it is quite stable with respect to the choice of the penalty parameter. Further research will be aimed at investigating the differential properties of the projection mapping and reducing the time of computing subgradients for account of parallel calculations. Keywords: Subgradient descent, constrained optimization, r-algorithm, exact projective penalty.

Publisher

V.M. Glushkov Institute of Cybernetics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3