Ellipsoid Method for Linear Regression Parameters Determination

Author:

Stovba Viktor1

Affiliation:

1. V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine

Abstract

Introduction. Linear regression parameters determination can be formulated as a non-smooth function minimization problem, which is Lp-norm of residual of the linear equations system. To solve it non-smooth function minimization methods can be used, e.g. subgradient methods. The article [7] considers ellipsoid method application for finding Lp-solution of redefined linear equations system with 1≤p≤2. The purpose of the paper is to extend the algorithm based on the ellipsoid method for a linear regression parameters determination problem with an arbitrary value of parameter p≥2 so that under big values of p the solution of the problem equals minimax method solution, which corresponds to p=∞ case. To describe the formulation of observation approximation problem with quadratic function as linear regression parameters determination problem. To analyze algorithm work results for great number of observations and outliers. To compare the minimax method and the ellipsoid method algorithm work results for linear regression parameters determination problem with big values of parameter p. Results. The way of calculation of objective function and its subgradient values with large values of parameter p was developed and verified on example of observation approximation containing outliers with linear function. Algorithm based on ellipsoid method changes linear function parameters monotonically using parameter p adjusting, thereby permits to reject or consider these or those observations. It is shown in [3] that Least Absolute Deviations method (LAD) is advised to be used as far as it ignores outliers and reconstructs linear function accurately. Experiment results with big number of observations and outliers using p=1 confirmed that conclusion: LAD ignores outlier groups and approximates observations with linear function adequately. Least Square Method (LSM) deviates from optimal linear function if a group of outliers is present in particular area. In case of using big values of parameter p problem solution converges to minimax method solution. Conclusions. Algorithm based on ellipsoid method permits to determine linear regression parameters with arbitrary value of parameter p≥1. So, three known methods can be used – LAD, LSM and minimax method – as its special cases. Moreover, directing p to 1, intensity of outliers ignoring can be regulated, that gives a possibility to use external sources of information (expert opinions, measuring devices readings, statistical forecasts, etc.) for more correct and adequate approximation function reconstruction. Keywords: ellipsoid method, linear regression, outliers.

Publisher

V.M. Glushkov Institute of Cybernetics

Subject

General Medicine

Reference10 articles.

1. Demydenko E.Z. Linear and non-linear regression. М.: Finansy i statistika, 1981. 304 p. (in Russian)

2. Shor N.Z., Stetsyuk P.I. Constructing Utility Functions by Methods of Nondifferentiable Optimization. In: Constructing and Appling Objective Functions, Lecture Notes in Economics and Mathematical Systems. V. 510. Berlin: Springer-Verlag, 2002. P. 215–232. https://doi.org/10.1007/978-3-642-56038-5_10

3. Stetsyuk P.I., Kolesnik Y.S., Leibovych M.M. On robustness of least absolute deviations. Kompyuternaya matematika. 2002. P. 114–123. (in Russian)

4. Stetsyuk P.I., Kolesnik Y.S. To the issue of selection of observation approximation method. Intellektualnye informacionno-analiticheskie sistemy i kompleksy. 2000. P. 62–67. (in Russian)

5. Stetsyuk P.I., Stovba V.A., Martynyuk I.S. Algorithms of ellipsoid method for finding Lp-solution of linear equations system. Teoriia optymalnykh rishen. 2017. P. 139–146. (in Russian) http://dspace.nbuv.gov.ua/handle/123456789/131449

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using the Ellipsoid Method to Study Relationships in Medical Data;Cybernetics and Computer Technologies;2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3