The New Geometric “State-Action” Space Representation for Q-Learning Algorithm for Protein Structure Folding Problem

Author:

Chornozhuk S.1

Affiliation:

1. V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine

Abstract

Introduction. The spatial protein structure folding is an important and actual problem in computational biology. Considering the mathematical model of the task, it can be easily concluded that finding an optimal protein conformation in a three dimensional grid is a NP-hard problem. Therefore some reinforcement learning techniques such as Q-learning approach can be used to solve the problem. The article proposes a new geometric “state-action” space representation which significantly differs from all alternative representations used for this problem. The purpose of the article is to analyze existing approaches of different states and actions spaces representations for Q-learning algorithm for protein structure folding problem, reveal their advantages and disadvantages and propose the new geometric “state-space” representation. Afterwards the goal is to compare existing and the proposed approaches, make conclusions with also describing possible future steps of further research. Result. The work of the proposed algorithm is compared with others on the basis of 10 known chains with a length of 48 first proposed in [16]. For each of the chains the Q-learning algorithm with the proposed “state-space” representation outperformed the same Q-learning algorithm with alternative existing “state-space” representations both in terms of average and minimal energy values of resulted conformations. Moreover, a plenty of existing representations are used for a 2D protein structure predictions. However, during the experiments both existing and proposed representations were slightly changed or developed to solve the problem in 3D, which is more computationally demanding task. Conclusion. The quality of the Q-learning algorithm with the proposed geometric “state-action” space representation has been experimentally confirmed. Consequently, it’s proved that the further research is promising. Moreover, several steps of possible future research such as combining the proposed approach with deep learning techniques has been already suggested. Keywords: Spatial protein structure, combinatorial optimization, relative coding, machine learning, Q-learning, Bellman equation, state space, action space, basis in 3D space.

Publisher

V.M. Glushkov Institute of Cybernetics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3