Affiliation:
1. V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine
Abstract
Introduction. Widespread use of unmanned aerial vehicles in the civilian and military spheres requires the development of new algorithms for identification friend or foe of targets, as used in the Armed Forces of Ukraine (AFU) devices of the "Parol" system are designed to service approximately 110 objects military equipment. AFU automation systems allow the use of additional sources of information about various objects from civil or special data transmission networks, which can be the basis for building a networked multi-level system of state recognition. Predictions of the development of quantum computers foresee the possibility of breaking modern algorithms for information security in polynomial time in the next 5-10 years, which requires the development and implementation of new encryption algorithms and revision of modern parameters.
The purpose of the article is to develop a new algorithm for state recognition of objects, which can be scaled to process the required number of manned and unmanned aerial vehicles. Potential threats to classical cryptographic protection algorithms for data networks, which will result in the execution of algorithms such as Grover and Shore on quantum computers, were also discussed.
Results. The article proposes a new multilevel algorithm of state recognition based on modern cryptographic methods of information protection, which allows to perform reliable automated identification of objects, scale systems using data on potential targets from other sources through secure special networks. Grover's search algorithm does not give a strong increase in key search performance for symmetric encryption algorithms, so there is no need to increase the key lengths for this type of information security algorithms. Post-quantum asymmetric encryption algorithms require additional study and comprehensive testing of information security or increasing the key lengths of cryptographic algorithms, which corresponds to the number of qubits, i.e. more than twice. The most promising is the family of asymmetric post-quantum cryptographic algorithms based on supersingular isogenic elliptic curves.
Conclusions. The developed algorithm of identification friend or foe of objects is more secure compared to existing algorithms and is focused on the use of modern on-board computers and programmable radio modems. Shore's algorithm and the like will be a significant threat to modern asymmetric cryptography algorithms when the number of qubits of quantum computers exceeds the number of bits in public keys more than twice.
Keywords: identification friend or foe, symmetric encryption, asymmetric cryptography, quantum computer, post-quantum cryptography.
Publisher
V.M. Glushkov Institute of Cybernetics
Reference21 articles.
1. Rudinskas D., Goraj Z., Stankūnas J. Security Analysis Of UAV Radio Communication System. Aviation. 2009. 13 (4). P. 116–121. https://doi.org/10.3846/1648-7788.2009.13.116-121
2. Ogurtsov M.I. Development of a secure data exchange protocol for special networks. Matematychne ta komp’yuterne modelyuvannya. Seriya: Tekhnichni nauky. 2019. 19. P. 108–113. (in Ukrainian) https://doi.org/10.32626/2308-5916.2019-19.108-113
3. DSTU 4550: 2006. System of state recognition of objects. The recognition radar. Terms and meanings of concepts. [Valid from 2007-08-01]. Kiev: Gospotrebstandart of Ukraine, 2007. 21 p. (in Ukrainian)
4. Zabolotsky V. Digital measurement of the Ukrainian Armed Forces. Under what conditions is this possible? (in Ukrainian) http://opk.com.ua/цифровий-вимір-зсу-за-яких-умов-це-можл/ (accessed: 06.08.2020)
5. Ermak S.N., Kasanin A.A., Khozhevets S. N. Device and operation of ground means of the friend of foe identification system. Minsk: BGUIR, 2017. 230 p. (in Russian)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献