Author:
Ismam Shafiul,Hossain Delwar,Salam Syed Munimus,Rashid Muhammad Mahbubur
Abstract
A rectangular microstrip patch antenna array with two ports, designed for operation in the mm-wave band at 28 GHz for 5G applications, has been developed to exhibit superior gain and efficiency. This paper introduces a 12-element array activated by a feed network utilizing a T-junction power combiner/divider. The array elements consist of rectangular patch antennas inserted throughout the structure. The designed array antenna exhibited a measured impedance bandwidth of 1.42 GHz. The simulated findings indicate that the antenna achieved a favorable impedance match, with isolation levels below -22 dB throughout the frequency range. The whole substrate board dimensions were 19.99 × 26.968 × 0.254 mm3. The array is positioned on the substrate material known as Rogers RT5880, resulting in a consistent and reliable radiation pattern. The CST MWS software is employed to model and simulate the microstrip patch array antenna. CST MWS is an electromagnetic simulator utilizing the Finite Integration in Technique (FIT) methodology to model and analyze full-wave electromagnetic phenomena accurately. The realized gain of 15 dBi has been reached for the combined array, whereas the individual arrays have a realized gain of 12.3 dBi. The calculated overall efficiency is roughly -0.5 decibels. The antenna array under consideration has demonstrated favorable multiple-input multiple-output (MIMO) capabilities, as evidenced by an envelope correlation coefficient (ECC) of less than 0.1.
Reference23 articles.
1. Pramod Dhande, “Antennas and its Applications”, Armament Research & Development Establishment, Dr. Homi Bhabha Rd, Pashan, Pune.
2. W. F. Williams, “High-Efficiency Antenna Reflector”, Microwave Journal, Vol. 8, July 1965.
3. David Alvarez Outerelo, Ana Vazquez Alejos, Manuel Garcia Sanchez, Maria Vera Isasa, “Microstrip Antenna for 5G Broadband Communications: Overview of Design Issues”, Department of Teoria de la Señal y Comunicaciones University of Vigo Vigo, Pontevedra, Spain.
4. Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmwave) for 5g: opportunities and challenges,” Wireless Networks, vol. 21, no. 8, pp. 2657–2676, 2015. https://doi.org/10.1007/s11276-015-0942-z
5. S. F. Jilani and A. Alomainy, “A Multiband Millimeter-Wave TwoDimensional Array Based on Enhanced Franklin Antenna for 5G Wireless Systems,” IEEE Antennas and Wireless Propagation Letters, 2017. https://doi.org/10.1109/LAWP.2017.2756560