Affiliation:
1. First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
Abstract
Cardiac resynchronisation therapy is a cornerstone in the treatment of advanced dyssynchronous heart failure. However, despite its widespread clinical application, precise mechanisms through which it exerts its beneficial effects remain elusive. Several studies have pointed to a metabolic component suggesting that, both in concert with alterations in chamber mechanics and independently of them, resynchronisation reverses detrimental changes to cellular metabolism, increasing energy efficiency and metabolic reserve. These actions could partially account for the existence of responders that improve functionally but not echocardiographically. This article will attempt to summarise key components of cardiomyocyte metabolism in health and heart failure, with a focus on the dyssynchronous variant. Both chamber mechanics-related and -unrelated pathways of resynchronisation effects on bioenergetics – stemming from the ultramicroscopic level – and a possible common underlying mechanism relating mechanosensing to metabolism through the cytoskeleton will be presented. Improved insights regarding the cellular and molecular effects of resynchronisation on bioenergetics will promote our understanding of non-response, optimal device programming and lead to better patient care.
Subject
Cardiology and Cardiovascular Medicine
Reference212 articles.
1. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016;37:2129-200. https://doi.org/10.1093/eurheartj/ehw128; PMID: 27206819.
2. McAlister FA, Ezekowitz J, Hooton N, et al. Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction: a systematic review. JAMA 2007;297:2502-14. https://doi.org/10.1001/jama.297.22.2502; PMID: 17565085.
3. Chalil S, Stegemann B, Muhyaldeen S, et al. Intraventricular dyssynchrony predicts mortality and morbidity after cardiac resynchronization therapy: a study using cardiovascular magnetic resonance tissue synchronization imaging. J Am Coll Cardiol 2007;50:243-52. https://doi.org/10.1016/j.jacc.2007.03.035; PMID: 17631217.
4. Yu CM, Lin H, Zhang Q, Sanderson JE. High prevalence of left ventricular systolic and diastolic asynchrony in patients with congestive heart failure and normal QRS duration. Heart 2003;89:54-60. PMID: 12482792.
5. Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res 2004;95:568-78. https://doi.org/10.1161/01.RES.0000141774.29937.e3; PMID: 15375023.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献