Fault Detection and Classification using Machine Learning

Author:

Kumar Dr. B. Suresh,Varma V. Abhinav,Rani S. Devika,Nishanth A.

Abstract

Abstract: Machine learning plays a crucial role in predicting and clas- sifying faults in electrical power systems. The complexity and dynamic nature of these systems make them vulnerable to disturbances and elec- trical faults. Detecting faults in the circuit can aid in maintaining the system by preventing potential damage from occurring. It is particularly important to be able to locate faults in transmission lines to minimize power and revenue losses. In this study, MATLAB software will be uti- lized to simulate and locate faults in transmission lines. A transmission line model will be designed, and a fault toolbox will be employed to create various faults. These faults will be saved and used to train machine learning models to identify the best algorithm with high precision and accuracy.

Publisher

International Journal for Research in Applied Science and Engineering Technology (IJRASET)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drone Detection and Classification Using YOLOv8 and Deep CNN;Information Systems Engineering and Management;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3