Forest Fire Prediction Using Machine Learning

Author:

R Virupaksha Gouda,R Anoop,Sameerna Joshi,Basha Arif,Gali Sahana

Abstract

Abstract: Forest fire vaticination refers to the process of using colorful ways and tools to read the liability and implicit inflexibility of a fire outbreak in a forested area. Forest fires are caused by a combination of factors similar as dry rainfall conditions, high temperatures, and mortal conditioning similar as conflagrations, cigarettes, and fireworks. There are several styles used in forest fire vaticination, including statistical analysis, machine literacy algorithms, and remote seeing ways. These styles help to gather and dissect data on rainfall conditions, energy humidity content, geomorphology, and other factors that contribute to the liability of a fire outbreak. Forest fire vaticination models can be used to give early warning systems to warn authorities and residers of implicit fire peril. These models also help to identify areas that are at high threat of backfires and enable authorities to take necessary preventives, similar as enforcing fire bans and evacuation orders, to help or minimize the impact of forest fires. Overall, forest fire vaticination plays a critical part in precluding and mollifying the damage caused by backfires. By furnishing accurate and timely information, it allows authorities to take visionary measures to reduce the threat of fire outbreaks and cover both mortal and natural coffers. In future predicting forest fire is expected to reduce the impact of fire. In this paper we are implementing the forest fire prediction system which predicts the probability of catching fire using meteorological parameters like position (latitude and longitude), temperature and more. we used Random Forest regression algorithm to implement this module.

Publisher

International Journal for Research in Applied Science and Engineering Technology (IJRASET)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3