Abstract
Unsolicited e-mail also known as Spam has become a huge concern for each e-mail user. In recent times, it is very difficult to filter spam emails as these emails are produced or created or written in a very special manner so that anti-spam filters cannot detect such emails. This paper compares and reviews performance metrics of certain categories of supervised machine learning techniques such as SVM (Support Vector Machine), Random Forest, Decision Tree, CNN, (Convolutional Neural Network), KNN(K Nearest Neighbor), MLP(Multi-Layer Perceptron), Adaboost (Adaptive Boosting) Naïve Bayes algorithm to predict or classify into spam emails. The objective of this study is to consider the details or content of the emails, learn a finite dataset available and to develop a classification model that will be able to predict or classify whether an e-mail is spam or not.
Publisher
International Journal for Research in Applied Science and Engineering Technology (IJRASET)
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. LongSpam: Spam Email Detection using LSTM Algorithm;2022 Seventh International Conference on Informatics and Computing (ICIC);2022-12-08
2. An overview of machine learning algorithms for detecting phishing attacks on electronic messaging services;2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO);2022-05-23