Prediction of Spam Email using Machine Learning Classification Algorithm

Author:

Teja P Sai

Abstract

Unsolicited e-mail also known as Spam has become a huge concern for each e-mail user. In recent times, it is very difficult to filter spam emails as these emails are produced or created or written in a very special manner so that anti-spam filters cannot detect such emails. This paper compares and reviews performance metrics of certain categories of supervised machine learning techniques such as SVM (Support Vector Machine), Random Forest, Decision Tree, CNN, (Convolutional Neural Network), KNN(K Nearest Neighbor), MLP(Multi-Layer Perceptron), Adaboost (Adaptive Boosting) Naïve Bayes algorithm to predict or classify into spam emails. The objective of this study is to consider the details or content of the emails, learn a finite dataset available and to develop a classification model that will be able to predict or classify whether an e-mail is spam or not.

Publisher

International Journal for Research in Applied Science and Engineering Technology (IJRASET)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LongSpam: Spam Email Detection using LSTM Algorithm;2022 Seventh International Conference on Informatics and Computing (ICIC);2022-12-08

2. An overview of machine learning algorithms for detecting phishing attacks on electronic messaging services;2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO);2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3