Abstract
Abstract: Facial Recognition, the biggest breakthrough in Biometric identification and security since fingerprints, uses an individual’s facial features to identify and recognize them. A technology that seems too farfetched taken straight from a science fiction novel is now available in smartphones in the palm of our hands. Facial Recognition has gained traction as the primary method of identification whether its mobile phones, smart security systems, ID verification or something as simple as login in a website. Recent strides in facial recognition technologies have made it possible to design, build and implement a facial recognition system ourself. Using Computer Vision and machine learning libraries like Facial Recognition and Dlib, we can create a robust system that can detect faces and then match and identify it with a database of pre-loaded facial data to successfully recognize them. This study conducted a literature review of these aforementioned technologies and various other advancements in the field of computer vision facial recognition by other scholars in their research papers. This paper analyzes domains to understand the working of these machine learning models and their different implementations in facial recognition systems. The research conducted by us during this review will be paramount in creating a proof-of-concept prototype facial recognition system. Keywords: DLib, Facial _Recognition, Machine Learning (ML), Deep Learning (DL), CNN, KNN, Face Detection, HOG, Support Vector Machine (SVM), Face Recognition.
Publisher
International Journal for Research in Applied Science and Engineering Technology (IJRASET)
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献