Abstract
Abstract: The recommendation problem involves the prediction of a set of items that maximize the utility for users. As a solution to this problem, a recommender system is an information filtering system that seeks to predict the rating given by a user to an item. There are theree types of recommendation systesms namely Content based, Collaborative based and the Hybrid based Recommendation systems. The collaborative filtering is further classified into the user based collaborative filtering and item based collaborative filtering. The collaborative filtering (CF) based recommendation systems are capable of grasping the interaction or correlation of users and items under consideration. We have explored most of the existing collaborative filteringbased research on a popular TMDB movie dataset. We found out that some key features were being ignored by most of the previous researches. Our work has given significant importance to 'movie overviews' available in the dataset. We experimented with typical statistical methods like TF-IDF , By using tf-idf the dimensions of our courps(overview and other text features) explodes, which creates problems ,we have tackled those problems using a dimensionality reduction technique named Singular Value Decomposition(SVD). After this preprocessing the Preprocessed data is being used in building the models. We have evaluated the performance of different machine learning algorithms like Random Forest and deep neural networks based BiLSTM. The experiment results provide a reliable model in terms of MAE(mean absolute error) ,RMSE(Root mean squared error) and the Bi-LSTM turns out to be a better model with an MAE of 0.65 and RMSE of 1.04 ,it generates more personalized movie recommendations compared to other models. Keywords: Recommender system, item-based collaborative filtering, Natural Language Processing, Deep learning.
Publisher
International Journal for Research in Applied Science and Engineering Technology (IJRASET)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献