Traffic Sign Detection Based on Convolutional Neural Network

Author:

Dileep Arjun

Abstract

Abstract: In today's world, nearly everything we have a tendency to do has been simplified by machine-driven tasks. In a trial to specialize in the road whereas driving, drivers usually miss out on signs on the facet of the road, that can be dangerous for them and for the folks around them. This drawback may be avoided if there was AN economical thanks to inform the motive force while not having them to shift their focus. Traffic Sign Detection and Recognition (TSDR) plays a vital role here by detection and recognizing a symptom, therefore notifying the motive force of any coming signs. This not solely ensures road safety, however additionally permits the motive force to be at very little a lot of ease whereas driving on tough or new roads. Another normally long-faced drawback isn't having the ability to know the which means of the sign. With the assistance of this Advanced Driver help Systems (ADAS) application, drivers can not face the matter of understanding what the sign says. during this paper, we have a tendency to propose a way for Traffic Sign Detection and Recognition exploitation image process for the detection of a symptom and a Convolutional Neural Networks (CNN) for the popularity of the sign. CNNs have a high recognition rate, therefore creating it fascinating to use for implementing varied laptop vision tasks. TensorFlow is employed for the implementation of the CNN. Keywords: actitvity recognition; knowledge collection; knowledge preprocessing; coaching CNN model ;evaluating model; predicting the result.

Publisher

International Journal for Research in Applied Science and Engineering Technology (IJRASET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SMS: SIGNS MAY SAVE – Traffic Sign Recognition and Detection using CNN;2022 6th International Conference on Electronics, Communication and Aerospace Technology;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3