Superoxide dismutase isoelectric focusing patterns as a tool to differentiate pathotypes of Globodera spp.

Author:

Molinari Sergio1,Greco Nicola2,Zouhar Miloslav3

Affiliation:

1. 3Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche, CNR, Via G. Amendola 122/D, 70126 Bari, Italy;, Email: s.molinari@ba.ipp.cnr.it

2. 1Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche, CNR, Via G. Amendola 122/D, 70126 Bari, Italy

3. 2Department of Plant Protection, Czech University of Life Sciences, Prague 6, Suchdol 165 21, Czech Republic

Abstract

Abstract Isoelectric focusing was used to separate proteins from cyst extracts of potato cyst nematode (PCN) populations. In a first set of assays, cyst extracts from standard populations of Globodera rostochiensis pathotypes Ro1, Ro2, Ro3, Ro2/3, Ro4, and Ro5, and G. pallida pathotypes Pa2 and Pa3, were loaded on isoelectric focusing gels. Gels were stained for superoxide dismutase (SOD), esterase, and glucose-6-phosphate isomerase (GPI). Twelve bands of SOD activity were detected, six (B1-B6) migrating towards the basic zone and the other six (A1-A6) migrating towards the acidic zone, starting from the loading point. A cluster analysis was carried out based on a data matrix that reported the presence or absence of SOD bands on the isozyme electrophoresis patterns (IEPs). Globodera spp. were clearly distinguished and, within G. rostochiensis, Ro2 and Ro4 shared a high level of similarity, respectively, with Ro3 and Ro5; moreover, Ro1 could be clearly distinguished from Ro2/3 and Ro4/5. Globodera pallida Pa2 and Pa3 also shared a high level of similarity. In contrast, esterase and GPI IEPs did not discriminate among G. rostochiensis standard pathotypes. Subsequently, 14 field populations of G. rostochiensis, five from Italy and nine from Venezuela, and three field populations of G. pallida, two from Italy and one from Chile, were assayed to obtain SOD IEPs. Italian populations had previously been identified at pathotype level by bioassays according to the generally accepted international test using different resistant potato cultivars and clones. The cluster analysis carried out on the SOD IEPs of all the populations tested formed four distinct groups within G. rostochiensis and only one within G. pallida. Pathotype identification of Globodera populations by SOD IEPs was not able to discriminate between bioassay standard couples Ro2/Ro3, Ro4/Ro5 and Pa2/Pa3. Therefore, three groups were assigned to Ro1, Ro2/3 and Ro4/5, and a fourth group to Pa2/Pa3. Four Venezuelan populations, not identified at pathotype level by bioassays, formed a distinct fifth group. By means of the method described herein, four additional unknown Venezuelan populations could be assigned to Ro1 group and one to Ro2/Ro3 group; one G. pallida population from Chile was assigned to Pa2/Pa3 group.

Publisher

Brill

Subject

Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3