An overview of the hydraulic systems in early land plants

Author:

Strullu-Derrien Christine1,Kenrick Paul2,Badel Eric3,Cochard Hervé4,Tafforeau Paul5

Affiliation:

1. 1Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

2. 2Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

3. 3INRA, UMR547 PIAF, 63100 Clermont-Ferrand, France; Clermont Université, Université Blaise Pascal, UMR547 PIAF, 63000 Clermont-Ferrand, France

4. 4INRA, UMR547 PIAF, 63100 Clermont-Ferrand, France; Clermont Université, Université Blaise Pascal, UMR547 PIAF, 63000 Clermont-Ferrand, France

5. 5European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble cedex, France

Abstract

One of the key functions of wood is hydraulic conductivity, and the general physical properties controlling this are well characterized in living plants. Modern species capture only a fraction of the known diversity of wood, which is well preserved in a fossil record that extends back over 400 million years to the origin of the vascular plants. Early fossil woods are known to differ in many key respects from woods of modern gymnosperms (e.g., tracheid size, secondary wall thickenings, lignin chemistry, cambium development) and recent discoveries are shedding new light on the earliest stages of wood evolution, raising questions about the performance of these systems and their functions. We provide an overview of the early fossil record focusing on tracheid morphology in the earliest primary and secondary xylem and on cambial development. The fossil record clearly shows that wood evolved in small stature plants prior to the evolution of a distinctive leaf-stem-root organography. The hydraulic properties of fossil woods cannot be measured directly, but with the development of mathematical models it is becoming increasingly feasible to make inferences and quantify performance, enabling comparison with modern woods. Perhaps the most difficult aspect of hydraulic conductance to quantify is the resistance of pits and other highly distinctive and unique secondary wall features in the earliest tracheids. New analytical methods, in particular X-ray synchrotron microtomography (PPC-SRμCT), open up the possibility of creating dynamic, three-dimensional models of permineralized woods facilitating the analysis of hydraulic and biomechanical properties.

Publisher

Brill

Subject

Forestry,Plant Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3