Variations in bacterial decay between cell types and between cell wall regions in waterlogged archaeological wood excavated in the intertidal zone

Author:

Cha Mi Young1,Lee Kwang Ho2ORCID,Kim Jong Sik3,Kim Yoon Soo3

Affiliation:

1. Underwater Excavation & Conservation Division, National Research Institute of Maritime Cultural Heritage, Mokpo 530-839, South Korea

2. Center for Research Facilities, Chonnam National University, Gwangju, South Korea

3. Department of Wood Science and Engineering, Chonnam National University, Gwangju 61186, South Korea

Abstract

Abstract The bacterial decay of waterlogged archeological wood (WAW, hard pine spp.) taken from Daebudo shipwreck No. 2, which was buried in the intertidal zone in the mid-west coast (Yellow sea) of South Korea approximately 800 years ago, was investigated. The maximum moisture content of the outer parts (approx. 3 cm of depth) of WAW was approximately 4.2 times higher than that of undegraded reference pine wood. ATR-FTIR and solid-state 13C-NMR analysis indicated a relative increase of the lignin concentration in WAW caused by the degradation of cellulose and hemicelluloses across the board studied (31-cm-wide and 14.5-cm-thick board). Micromorphological studies also revealed that bacterial degradation was progressed to a depth of 15 cm (vertically 7.3 cm) from the surface, which is the innermost part of the board. Erosion bacteria (EB) were identified as the main degraders of WAW. Degradation by tunneling bacteria (TB) was occasionally detected. Decay resistance to bacterial attacks in WAW varied between cell types and between cell wall regions. Axial tracheids showed less resistance than ray tracheids, ray parenchyma cells, and axial intercellular canal cells, including strand tracheids, subsidiary parenchyma cells, and epithelial cells. Decay resistance was higher in ray tracheids and strand tracheids than in ray parenchyma cells and subsidiary parenchyma-/epithelial cells, respectively. Bordered- and cross-field pit membranes and the initial pit borders showed higher decay resistance than the tracheid cell walls. Overall, the S2 layer of the axial tracheids showed the weakest resistance to bacterial attacks.

Publisher

Brill

Subject

Forestry,Plant Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3