Wood anatomy of 13 species from a successional tropical dry forest: description and ecological implications

Author:

Romero Eunice1ORCID,Terrazas Teresa2ORCID,González Edgar J.1ORCID,Meave Jorge A.1ORCID

Affiliation:

1. Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Coyoacán, Mexico City, Mexico

2. Instituto de Biología, Universidad Nacional Autónoma de México Mexico City, Mexico

Abstract

Summary Successional tropical dry forest (TDF) species face water scarcity in the harsh dry season. Wood features provide insight into potential hydraulic stress coping mechanisms. Here, we describe the wood anatomy of 13 species occurring frequently in successional TDF. Given the marked rainfall seasonality of TDF, we expected these species to share conspicuous growth rings boundaries and drought-adapted anatomical features such as paratracheal parenchyma; although given the taxonomic and phenological diversity, a high wood diversity was also expected. Most species have diffuse-porosity. Axial parenchyma is diversely associated with vessels. Simple perforation plates are common and exclusive to all species. Different features poorly delimit growth boundaries, as previously observed in other tropical species. The main ground tissue is diverse, including nonseptate fibers, septate living fibers, or exclusively parenchyma. Axial and radial parenchyma may be scarce, abundant, or represent the main and unlignified ground tissue component. Vessel grouping ranges from solitary and 2–29 vessels per group. The mean vessel diameter range is ⩽50–200 μm; fiber walls are very thin to very thick. The anatomical features recorded among successional TDF species suggest different water stress coping mechanisms resulting from various anatomical combinations. Seven species exhibit wood features associated with drought tolerance (higher hydraulic redundancy, higher mechanical resistance, with vessel-ray connectivity likely given by banded parenchyma), whereas six species share xylem features associated with drought avoidance (taller and wider rays indicating higher water storage capacity). The complexity and multifunctionality of stem woody tissue should caution us against oversimplifying the relationship between anatomy, function, and ecological performance of TDF species.

Publisher

Brill

Subject

Forestry,Plant Science

Reference88 articles.

1. Ecophysiological implications of vascular differentiation and plant evolution;Aloni R

2. The role of wood anatomical traits in the coexistence of oak species along an environmental gradient;Arenas-Navarro M

3. Unique occurrence of pectin-like fibrillar cell wall deposits in xylem fibres of poplar;Arend M

4. Some functional and adaptive aspects of vessel member morphology;Baas P

5. Some ecological trends in vessel characters;Baas P

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3