Variations in tension wood characteristics of Populus alba under alternate bending, nitrogen fertilization, and gibberellin treatments

Author:

Gorgij R.1,Pourtahmasi K.1ORCID,Maali Amiri R.2,Abdolkhani A.1,Porojan M.3

Affiliation:

1. Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran

2. Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran

3. Department of Wood Processing and Wood Products Design, Faculty of Wood Engineering, Transilvania University of Brasov, Brasov, Romania

Abstract

Summary Reaction wood formation (tension wood) in trees such as poplar is a response to stress and environmental factors. Tension wood is a rich source of cellulose that can be used for products including paper or biofuels and is thus a target product in forestry. This study aimed to evaluate the formation of tension wood in two-year-old saplings of Populus alba by using alternate bending, nitrogen fertilization, and gibberellin hormone. Saplings were bent alternately in one or another direction every month during the growing season, fertilized twice at the beginning and in the middle of the growing season, and treated with gibberellin early in the growing season. The physical and anatomical characteristics of the wood were studied after the end of the growing season. Evaluation of transverse sections of specimens stained with safranin/Astra-blue showed that, compared with straight saplings, alternate bending saplings had a wider tension wood area in the growth ring and clear formation of a gelatinous layer. The wood of alternate bending saplings with nitrogen fertilization and gibberellin hormone had a higher wood density, greater longitudinal shrinkage, and less radial and tangential shrinkage than saplings with other treatments. Moreover, the alternate bending saplings treated with nitrogen fertilization and gibberellin hormone had tension wood with the largest vessels, the lowest vessel density, and the smallest total vessel lumen area than saplings with other treatments. Wood fibers of treated saplings also had the thickest wall with the smallest fiber and lumen diameters. Overall, the bending treatment with the addition of nitrogen fertilization and gibberellin hormone was the most effective for the stimulation of tension wood formation in terms of volume and intensity.

Publisher

Brill

Subject

Forestry,Plant Science

Reference40 articles.

1. Cell wall thickening in developing tension wood of artificially bent poplar trees;Abedini R

2. Hormonal control of reaction wood formation

3. Influence of gelatinous fibers on the shrinkage of silver maple;Arganbright DG

4. The role of plant hormones in tree-ring formation;Buttò V

5. Evidence that release of internal stress contributes to drying strains of wood;Clair B

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3