Correlation of intrusive growth of cambial initials to rearrangement of rays in the vascular cambium

Author:

Wilczek Anna,Jura-Morawiec Joanna,Kojs Paweł,Iqbal Muhammad,Włoch Wiesław

Abstract

It is well documented that apical elongation of fusiform cambial initials through extension of their longitudinal edges, and their intrusion between tangential walls of the neighbouring initials and their closest derivatives cause rearrangement of fusiform cells, without increasing the cambial circumference. However, the concurrent rearrangement of rays is not fully understood. This study deals with Pinus sylvestris L., Tilia cordata Mill. and Hippophaë rhamnoides L., possessing a nonstoreyed, storeyed and double-storeyed type of cambium, respectively, and shows that the mechanism for rearrangement of ray initials is similar to the one proposed for fusiform initials, and includes multiplication of ray initials by anticlinal divisions, intrusive growth of ray initials, elimination of ray initials caused by intrusive growth of neighbouring fusiform initials, and transformation of ray initials into fusiform initials. Intrusive growth of a ray initial does not necessarily lead to the formation of a new fusiform initial, as it is dependent on the extent of the intrusive growth taken place. The extent of rearrangement of cambial cells is determined by the intensity of events occurring among the fusiform as well as ray initials. Intrusive growth of these initials does not influence the size of the cambial circumference.

Publisher

Brill

Subject

Forestry,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3