The vascular cambium revisited

Author:

Groover Andrew12ORCID

Affiliation:

1. US Forest Service, Pacific Southwest Experiment Station, 1731 Research Park Drive, Davis, CA 95618, USA

2. Northern Research Station, Burlington, VT 05405, USA

Abstract

Summary The vascular cambium presents fundamental questions about the evolution and developmental biology of plants. Over time, our perspectives of the vascular cambium have changed as new molecular and genetic approaches have augmented anatomical observations and are now providing new insights into longstanding topics related to vascular cambium evolution, development and function. At the same time, practical applications of knowledge of the vascular cambium associated with climate change give new urgency to research of how the cambium produces varied wood anatomies both among species and within individual trees that influence response to drought and heat stress. Here, two topics are discussed that are generally related to the storied research of Sherwin Carlquist and his pursuits of the vascular cambium; the identity and function of cambium initials, and the plasticity of wood anatomical traits related to adaptive hydraulic traits. This short paper ends with a call for integrative research that could provide new insights into how trees respond to climate change that take advantage of the comparative wood anatomy framework so well-articulated by Carlquist.

Publisher

Brill

Subject

Forestry,Plant Science

Reference38 articles.

1. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe;Anderegg WR

2. Tree mortality: testing the link between drought, embolism vulnerability, and xylem conduit diameter remains a priority;Anfodillo T

3. Sector analysis reveals patterns of cambium differentiation in poplar tree stems;Bossinger G

4. Ecological factors in wood evolution: a floristic approach;Carlquist S

5. Comparative wood anatomy, systematic, ecological and evolutionary aspects of dicotyledon wood;Carlquist S

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3