Biomechanical costs and benefits of sit-and-wait foraging traps

Author:

Blamires Sean J.1

Affiliation:

1. Ecology & Evolution Research Centre, School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Abstract Traps are rarely used by animals, despite the plausible benefits of broadening the number and diversity of prey that sit-and-wait foragers might be able to capture. The most well-known trap building sit-and-wait foragers are among the invertebrates, i.e. antlions, wormlions, glow worms, caddisflies, and spiders. A plausible hypothesis for the paucity of trap building by other animals is that biomechanical limitations render them inefficient or ineffective at catching sufficient prey. Here I examined the literature to make a valued judgement about the validity of this hypothesis. It appears that antlion and wormlion pit traps cannot catch and retain the largest prey they might expect to encounter. Arachnacampa glowworm traps are functionally efficient, facilitated by the animal’s bioluminescence. Nevertheless they only function in very moist or humid conditions. Caddisfly traps rely on flowing water to be able to capture their prey. Spiders are exceptional in developing a wide range of prey trapping strategies, from webs with dry adhesives, to sticky orb webs, to modified orb webs, e.g. elongated “ladder” webs, to webs with additional structures, and web aggregations. Some spiders have even redesigned their webs to minimize the high prey escape rates associated with web two dimensionality. These webs nevertheless are constructed and used at specific costs. While hard data across all of the invertebrate predators is lacking, there seems to be credence in the hypothesis that the biomechanical limitations placed on trap functionality can explain their limited use among animals.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3