A review of the ecology, genetics, evolution, and magnetosome –induced behaviours of the magnetotactic bacteria
-
Published:2021-10-15
Issue:
Volume:
Page:1-10
-
ISSN:1565-9801
-
Container-title:Israel Journal of Ecology and Evolution
-
language:
-
Short-container-title:Israel J. Ecol. Evol.
Affiliation:
1. Department of Zoology, Bankura Christian College, College Road, Bankura, West Bengal, 722101, India
Abstract
Abstract
The discovery of magnetosome and magnetotaxis in its most simple form in the magnetotactic bacteria (MTB) had created the tremendous impetus. MTB, spanning multiple phyla, are distributed worldwide, and they form the organelles called magnetosomes for biomineralization. Eight phylotypes of MTB belong to Alphaproteobacteria and Nitrospirae. MTB show preference for specific redox and oxygen concentration. Magnetosome chains function as the internal compass needle and align the bacterial cells passively along the local geomagnetic field (GMF). The nature of magnetosomes produced by MTB and their phylogeny suggest that bullet-shaped magnetites appeared about 3.2 billion years ago with the first magnetosomes. All MTB contains ten genes in conserved mamAB operon for magnetosome chain synthesis of which nine genes are conserved in greigite-producing MTB. Many candidate genes identify the aero-, redox-, and perhaps phototaxis. Among the prokaryotes, the MTB possess the highest number of O2-binding proteins. Magnetofossils serve as an indicator of oxygen and redox levels of the ancient environments. Most descendants of ancestral MTB lost the magnetosome genes in the course of evolution. Environmental conditions initially favored the evolution of MTB and expansion of magnetosome-formation genes. Subsequent changes in atmospheric oxygen concentration have led to changes in the ecology of MTB, loss of magnetosome genes, and evolution of nonMTB.
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献