Differential eco-physiological performances of two pseudocryptic species of the Eurytemora affinis complex (Copepoda, Calanoida) in the St. Lawrence estuarine transition zone: a reciprocal transplant experiment

Author:

Cabrol Jory12,Tremblay Réjean1,Winkler Gesche12

Affiliation:

1. 1Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada G5L 3A1

2. 2Québec-Océan, Rimouski, QC, Canada G5L 3A1

Abstract

Abstract The goal of this study was to evaluate and compare the short-term performances and the physiological plasticity of two cryptic species Eurytemora carolleeae and Eurytemora affinis (North-Atlantic clade) by simulating rapid advection from freshwater to brackish water conditions and reciprocally. To do so, two reciprocal transplant experiments without acclimation and under non-limited food condition were performed in the St. Lawrence estuarine transition zone during summer 2011. Results revealed that both species diverged in their short-term acclimation response when facing acute salinity changes that they might encounter when advected through the highly dynamic estuarine transition zone. We show that E. carolleeae could use the brackish environment without loss of performance and energy, while E. affinis needed to reallocate energy from other processes (i.e., reproduction) and required food intake to maintain itself in the freshwater environment. In addition, the transplant experiment highlighted that only 40% of the E. affinis showed short term capacity to acclimate to freshwater conditions, indicating that in situ advection by currents from brackish water to fresh water could be dramatic even for a short time period. Furthermore, the survivors of E. affinis in fresh water might not be able to reproduce, which limits establishment of a sustainable population of E. affinis (North-Atlantic clade) in the tidal freshwater part of the estuarine transition zone. Finally, we highlighted for the first time that both species of this pseudocryptic complex could use lipid remodelling to overcome temperature effects on membrane structure, but further studies are needed to determine the influence of membrane lipid remodelling on salinity tolerance.

Publisher

Brill

Subject

Animal Science and Zoology,Aquatic Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3