Lepeophtheirus salmonis (Krøyer, 1837): second nauplius and copepodid locomotor appendages, surface areas and possible appendage functions

Author:

Allen Susan E.1,Lewis A. G.1

Affiliation:

1. Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2202-2207 Main Mall, Vancouver, BC, Canada V6T 1Z4

Abstract

Locomotor appendage-body relationships were used to examine whether swimming or reduction in sinking rate is the more important function in the second nauplius and copepodid stages of Lepeophtheirus salmonis (Krøyer, 1837). Except for the similarity in swimming appendage surface areas without setae, the appendages of the two stages are morphologically distinct. Although the nauplius is smaller than the copepodid it has long slender appendages that, with setae, provide greater total surface area than the paddle-shaped copepodid thoracic legs. Copepodid thoracic legs are more similar to those used for swimming by planktonic copepods although with more limited propulsion capability. Naupliar appendages project from the body while copepodid appendages can be folded against the ventral surface, improving hydrodynamic flow as well as body position after attachment to a host. Both copepodid and naupliar appendages are of sufficient size that they should provide escape velocities of more than 100 mm ⋅ s−1. The nature and display of the naupliar appendages suggest they could be used to reduce sinking rate by as much as 64%, reducing the need to swim to maintain a suitable location in the water. Although copepodid thoracic legs could reduce sinking rate by over 40%, their position on the ventral surface and the nature of other appendages suggests a more important use, for orientation and attachment once a host is located.

Publisher

Brill

Subject

Animal Science and Zoology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3