Broad-ranging low genetic diversity among populations of the yellow finger marsh crab Sesarma rectum Randall, 1840 (Sesarmidae) revealed by DNA barcode

Author:

Buranelli Raquel C.1,Mantelatto Fernando L.1

Affiliation:

1. Laboratory of Bioecology and Systematics of Crustaceans (LBSC), Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Av. Bandeirantes 3900, 14040-901 Ribeirão Preto (SP), Brazil

Abstract

Population genetic studies on marine taxa, specifically in the field of phylogeography, have revealed distinct levels of genetic differentiation in widely distributed species, even though they present long planktonic larval development. A set of factors have been identified as acting on gene flow between marine populations, including physical or physiological barriers, isolation by distance, larval behaviour, and geological and demographic events. In this way, the aim of this study was to analyse the genetic variability among populations of the crab speciesSesarma rectumRandall, 1840 along the western Atlantic in order to check the levels of genetic diversity and differentiation among populations. To achieve this purpose, mtDNA cytochrome-coxidase subunit I (COI) (DNA-barcode marker) data were used to compute a haplotype network and a Bayesian analysis for genetic differentiation, to calculate an Analysis of Molecular Variance (AMOVA), and haplotype and nucleotide diversities. Neutrality tests (Tajima’sDand Fu’s ) were accessed, as well as pairwise mismatch distribution under the sudden expansion model. We found sharing of haplotypes among populations ofS. rectumalong its range of distribution and no significant indication for restricted gene flow between populations separately over 6000 km, supporting the hypothesis of a high dispersive capacity, and/or the absence of strong selective gradients along the distribution. Nevertheless, some results indicated population structure suggesting the presence of two genetic sources (i.e., groups or lineages), probably interpreted as a result of a very recent bottleneck effect due to habitat losses, followed by the beginning of a population expansion.

Publisher

Brill

Subject

Animal Science and Zoology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3