The Role of a Mechanical Coupling in (Spontaneous) Interpersonal Synchronization: a Human Version of Huygens’ Clock Experiments

Author:

Crombé Kristel1,Denys Marlies1,Maes Pieter-Jan1

Affiliation:

1. Department of Art, Music and Theatre Sciences, Faculty of Arts and Philosophy, Ghent University, 9000 Gent, Belgium

Abstract

Abstract Interpersonal musical interaction typically relies on the mutual exchange of auditory and visual information. Inspired by the finding of Christiaan Huygens that two pendulum clocks spontaneously synchronize when hanging from a common, movable wooden beam, we explored the possible use of mechanical coupling as an alternative coupling modality between people to strengthen (spontaneous and instructed) joint (musical) synchronization. From a coupled oscillator viewpoint, we hypothesized that dyads standing on a common movable platform would cause bidirectional passive body motion (and corresponding proprioceptive, vestibular and somatosensory sensations), leading to enhanced interpersonal coordination and mutual entrainment. To test this hypothesis, we asked dyads to perform a musical synchronization–continuation task, while standing on a movable platform. Their rhythmic movements were compared under different conditions: mechanically coupled/decoupled platforms, and spontaneous/instructed synchronization. Additionally, we investigated the effects of performing an additional collaborative conversation task, and of initial tempo and phase differences in the instructed rhythms. The analysis was based on cross wavelet and synchrosqueezed transforms. The overall conclusion was that a mechanical coupling was effective in support of interpersonal synchronization, specifically when dyads were explicitly instructed to synchronize using the movable platform (instructed synchronization). On the other hand, results showed that mechanical coupling led only minimally to spontaneous interpersonal synchronization. The collaborative task and the initial phase and tempo have no strong effect. Although more research is required, possible applications can be found in the domains of music education, dance and music performance, sports, and well-being.

Publisher

Brill

Subject

Cognitive Neuroscience,Applied Psychology,Experimental and Cognitive Psychology,Neuropsychology and Physiological Psychology

Reference43 articles.

1. Modeling rhythmic interlimb coordination: beyond the Haken–Kelso–Bunz model;Beek, P. J.,2002

2. Über das Elektroenkephalogramm des Menschen;Berger, H.,1929

3. Hunting for the beat in the body: on period and phase locking in music-induced movement;Burger, B.,2014

4. Neuronal oscillations in cortical networks;Buzsáki, G.,2004

5. In time with the music: the concept of entrainment and its significance for ethnomusicology;Clayton, M.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3