Plant-mediated RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in diverse genetic backgrounds of potato and reduces pathogenicity of nematode offspring

Author:

Dinh Phuong T.Y.1,Dinh Phuong T.Y.1,Zhang Linhai2,Dinh Phuong T.Y.1,Zhang Linhai2,Brown Charles R.2,Dinh Phuong T.Y.1,Zhang Linhai2,Brown Charles R.2,Elling Axel A.1

Affiliation:

1. Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA

2. Vegetable and Forage Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Prosser, WA 99350, USA

Abstract

Meloidogyne chitwoodi is a major problem for potato production in the Pacific Northwest of the USA. In spite of long-term breeding efforts no commercial potato cultivars with resistance to M. chitwoodi exist to date. The resistance gene against M. chitwoodi has been introgressed from Solanum bulbocastanum into cultivated potato (S. tuberosum), but M. chitwoodi pathotypes are able to overcome this resistance. In this study, an RNA interference (RNAi) transgene targeting the M. chitwoodi effector gene Mc16D10L was introduced into potato cvs Russet Burbank and Désirée, and the advanced breeding line PA99N82-4, which carries the gene. Stable transgenic lines were generated for glasshouse infection assays. At 35 days after inoculation (DAI) with M. chitwoodi race 1 the number of egg masses (g root)−1 formed on RNAi lines of cvs Russet Burbank and Désirée was reduced significantly by up to 68% compared to empty vector control plants. At 55 DAI, the number of eggs was reduced significantly by up to 65%. In addition, RNAi of Mc16D10L significantly reduced the development of egg masses and eggs formed by the resistance-breaking M. chitwoodi pathotype Roza on PA99N82-4 by up to 47 and 44%, respectively. Importantly, the plant-mediated silencing effect of Mc16D10L was transmitted to M. chitwoodi offspring and significantly reduced pathogenicity in the absence of selection pressure on empty vector control plants. This finding suggests that the RNAi effect is stable and nematode infection decreases regardless of the genotype of the host once the RNAi process has been initiated in the nematode through a transgenic plant. In summary, plant-mediated down-regulation of effector gene Mc16D10L provides a promising new tool for molecular breeding against M. chitwoodi.

Publisher

Brill

Subject

Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3