Single nucleotide polymorphism markers in Heterorhabditis bacteriophora associated with virulence at low temperature

Author:

Godina Giulia12ORCID,Kirsch Carlotta12,Dörfler Verena1,Barg Mike1,Singh Phougeishangbam Rolish3,Vandenbossche Bart1,Strauch Olaf1,Ehlers Ralf-Udo12,Molina Carlos1

Affiliation:

1. e–nema GmbH, Klausdorfer Strasse 28-36, 24223 Schwentinental, Germany

2. Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 4, 24118 Kiel, Germany

3. Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium

Abstract

Summary The entomopathogenic nematode (EPN), Heterorhabditis bacteriophora, is an important biological control agent worldwide. Industrially produced EPN need to meet the climatic requirements for the control of pests in field agriculture in autumn and spring when temperatures are low. For this trait (virulence at low temperature), previous EPN improvement attempts relied on phenotypic selection and the selected trait had low stability. The use of molecular markers can increase the efficacy of EPN breeding by tracking traits associated with specific genotypes. To date, fewer than 200 polymorphic and reproducible sequence-tagged molecular markers in H. bacteriophora have been reported. Here, we enhanced the palette of highly polymorphic genetic markers for this EPN by applying genotyping by sequencing (GBS). By analysing 48 H. bacteriophora homozygous wild-type inbred lines from different origins, we determined 4894 single nucleotide polymorphisms (SNPs) with at least one polymorphism along the tested set. For validation, we designed robust PCR assays for seven SNPs, finding 95% correspondence with the expected genotypes along 294 analysed alleles. We phenotyped all lines for their virulence at low temperature (15°C) against mealworm and observed infectivity ranging from 38 to 80%. Further, we carried out association analyses between genotypic and phenotypic data and determined two SNPs yielding potential association with H. bacteriophora virulence at low temperature. The use of these candidate SNPs as breeding markers will speed up the generation of strains better adapted to low temperature in this species. The generated set of lines and SNP data are a versatile tool applicable for further traits in this EPN.

Publisher

Brill

Subject

Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3