Affiliation:
1. aLaboratory of Molecular Systematics, Botanical Garden and Museum, Sølvgade 83 Opg. S, 1307 Copenhagen K, Denmark
2. Universidade Federal do Rio de JaneiroCidade UniversitáriaBrasil
3. cHoshizaki Green Foundation, Okinoshima, 1659-5 Sonocho, Izumo, Shimane 691-0076, Japan
4. dAustralian National Insect Collection, CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia
5. International Research Institute for EntomologyAustria
Abstract
The phylogenetic relationships among selected species and genera of Mesoveliidae (Insecta: Hemiptera: Heteroptera: Gerromorpha) were investigated in a parsimony analysis of 2858 bp of DNA sequence data from the genes encoding COI + II, 16S rRNA and 28S rRNA. The resulting phylogeny showed that Mesoveloidea williamsiHungerford, 1929, from the subfamily Madeoveliinae, was sister group to Mniovelia Andersen & J.T. Polhemus, 1980, from the Mesoveliinae, thus making the latter subfamily paraphyletic. The genus MesoveliaMulsant & Rey, 1852 also showed to be paraphyletic, since an undescribed Laotian relative of M. indicaHorváth, 1915 and M. ujhelyiiLundblad, 1933 resulted as sister group to PhrynoveliaHorváth, 1915; and M. amoenaUhler, 1894 was sister species to Speovelia maritimaEsaki, 1929. Whereas these relationships were poorly or moderately supported, the remaining species of Mesovelia formed two distinct and well-supported clades, one comprising M. horvathiLundblad, 1933, M. hackeriHarris & Drake, 1941, and two undescribed species from Nigeria and New Caledonia, and another comprising M. vittigeraHorváth, 1895, M. stysi J.T. Polhemus & D.A. Polhemus, 2000, M. ebbenielseniAndersen & Weir, 2004, M. furcata Mulsant & Rey, 1952, and M. mulsantiWhite, 1879. A large genetic difference was found between populations of M. vittigera from Europe and Africa on one side and populations from Australia and New Caledonia on the other. DNA sequence data from a Japanese “M. vittigera” obtained from GenBank placed the specimen as strongly supported sister group to a Danish specimen of M. furcata. Comparisons of the 28S rRNA sequence data between the two specimens revealed a single C/T transition, while comparison with a Chinese female of M. furcata revealed one A/G and one C/T transition, thus suggesting mislabelling of the Japanese specimen, or an unrecognized presence of M. furcata in Japan. Considerable genetic differentiation was found between specimens of M. horvathi from Australia, New Caledonia, New Guinea, and Laos, and between sympatric specimens of M. mulsanti from Honduras, thus supporting earlier ideas of species-complexes in these two clades. Samples of Austrovelia caledonicaMalipatil & Monteith, 1983 from New Caledonia and Mniovelia kuscheli Andersen & J.T. Polhemus, 1980 from New Zealand’s North Island also revealed considerable intraspecific divergences indicating genetic isolation among geographically separated populations on these ancient islands.
Subject
Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献