Effects of food restriction on body mass, energy metabolism and thermogenesis in a tree shrew (Tupaia belangeri)

Author:

Hong-bi Peng1,Dong-min Hou1,Di Zhang2,Wan-long Zhu134

Affiliation:

1. 1Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming, 650500, China

2. 4Yunnan Medical Health College, Kunming, 650106, People’s Republic of China

3. 2Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, China

4. 3The Key Laboratory of Biomass Energy and Environmental Biotechnology in Yunnan Province, Kunming, 650092, China

Abstract

Abstract The metabolic switch hypothesis refers to an ability to adjust metabolic rate. It plays a key role in animals adapted to periods of food shortage, enabling them to “switch down” their resting metabolic rate and to survive and maintain their weight indefinitely on limited rations. The present study investigates the energy strategies of a small mammal in response to food shortages as a function of food restriction, metabolic rate and ambient temperature. We subjected tree shrews (Tupaia belangeri) to food restriction and measured body mass, survival rate, resting metabolic rate, non-shivering thermogenesis and cytochrome c oxidase activity of brown adipose tissue. Cold-exposed animals restricted to 80% of ad libitum food intake had significantly increased resting metabolic rate and non-shivering thermogenesis and decreased body mass and survival rates compared with those kept as control group on the same ood restriction level. Animals classified as having a high resting metabolic rate consumed 30.69% more food than those classified as having a low resting metabolic rate, but showed no differences in body mass or survival when restricted to 80% of ad libitum food intake. These results indicate that tree shrews, known for their relatively high metabolic rates, are sensitive to periods of food restriction, which supports the metabolic switch hypothesis. Our findings are also consistent with the prediction that small mammals with food hoarding behaviors, like tree shrews, may have a lower tolerance for food shortages than non-hoarding species.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3