Does mating negatively affect female immune defences in insects?

Author:

Oku Keiko1,Price Tom A.R.2,Wedell Nina1

Affiliation:

1. 1Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn TR10 9FE, UK

2. 2Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK

Abstract

Abstract Immunity is an important mechanism of protection against pathogens and parasites. One factor that can influence immunity is mating. During mating, male-derived materials are transferred to females, and the physical contact also involves the potential risk of sexually transmitted infections, and wounding. Thus, mating can challenge a female’s immune system. This review focuses on exploring how immunity and mating interact in female insects. Although mating has been shown to cause female immune responses in several species, the responses do not always match the observed resistance to pathogens/parasites. Mating up-regulates female immune responses while female resistance is reduced compared to virgin females in some species, and vice versa in other taxa. We discuss why mismatches occur and why post-mating female resistance differs among species, and suggest that measured immune responses may not correlate with female resistance. Also, the mating system will play a major role. Polyandrous mating systems can generate intense post-mating sexual conflict, which can impose high costs of mating on females. Reduced female post-mating resistance may be due to direct suppression of female immunity by males. Alternatively, polyandry may increase the risk of sexually transmitted infections. If this is the major factor driving female post-mating resistance, females of polyandrous species should have higher post-mating immunity. To date, there are insufficient numbers of studies to fully answer the question ‘does mating negatively affect female immune defences in insects?’ To elucidate the links between immunity and mating in females, we need more studies in more species with varied mating systems.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3