Hox gene expression profiles during embryonic development of common sole

Author:

Kavouras Menelaos1,Malandrakis Emmanouil E.1,Golomazou Eleni1,Konstantinidis Ioannis1,Blom Ewout2,Palstra Arjan P.3,Anastassiadis Konstantinos4,Panagiotaki Panagiota1,Exadactylos Athanasios1

Affiliation:

1. 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Str., Volos, Greece

2. 2Wageningen Marine Research, Wageningen University & Research, IJmuiden, The Netherlands

3. 3Wageningen University & Research, Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen, The Netherlands

4. 4Biotechnology Centre (BIOTEC), TU Dresden, Dresden, Germany

Abstract

Abstract Common sole (Solea solea) aquaculture production is based mostly on wild-caught breeders. Recently, the successful reproduction of first-generation fish that were reared in captivity was accomplished. A consistent good quality and quantity of produced eggs throughout the year, and of next-generation broodstock, is important for reducing the overall cost of production. Hox genes play a pivotal role in normal embryonic development and alterations of their temporal expression level may be important for egg viability. Expression profile analysis of five hox genes (hoxa1a, hoxa2a, hoxa2b, hoxb1a and hoxb1b) involved in early embryonic development and of hoxa13a, which is involved in late stages, was carried out. Results revealed a premature and/or maternal expression of hoxa13a in sole embryos, and the detection of hoxa2a and hoxa2b genes as members of paralog group 2. Principal Component Analysis of hox gene expression in 54 ± 6 hours post fertilization embryos coming from wild-caught broodstock and a first-generation one reared in the hatchery, unveiled that these broodstocks are clearly distinct. In addition, their pairwise comparison revealed significant differences in the expression levels of hoxb1a and hoxb1b genes. Hox gene regulation during embryonic development could give valuable insight into rearing sole broodstocks with different origin in concert, and also into gaining a steady mass production of eggs, either in quality or quantity, all year round.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3