Analysing “Long Data” on Collective Violence in Indonesia

Author:

Meyer David A.1,Stein Arthur2

Affiliation:

1. University of California, San Diego

2. University of California, Los Angeles

Abstract

“Long data”, i.e., temporal data disaggregated to short time intervals to form a long time series, is a particularly interesting type of “big data”. Financial data are often available in this form (e.g., many years of daily stock prices), but until recently long data for other social, and even other economic, processes have been rare. Over the last decade, however, long data have begun to be extracted from (digitized) text, and then used to assess or formulate micro-level and macro-level theories. The UN Support Facility for Indonesian Recovery (UNSFIR) collected a long data set of incidents of collective violence in 14 Indonesian provinces during the 14 year period 1990–2003. In this paper we exploit the “length” of the UNSFIR data by applying several time series analysis methods. These reveal some previously unobserved features of collective violence in Indonesia—including periodic components and long time correlations—with important social/political interpretations and consequences for explanatory model building.

Publisher

Elsevier BV

Subject

General Social Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3