Behavioural quiescence reduces the penetration and toxicity of exogenous compounds in second-stage juveniles of Heterodera glycines

Author:

Schroeder Nathan E.1,MacGuidwin Ann E.2

Affiliation:

1. 1Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA

2. 2Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA;, Email: aem@plantpath.wisc.edu

Abstract

Abstract Inactivity in nematodes is often correlated with survival of adverse environments. The non-feeding second-stage juvenile (J2) of Heterodera glycines must survive in a soil environment that may contain numerous toxins. In this report, we show that quiescent J2 of H. glycines survived higher concentrations of both ethanol and the plant-derived compound, allyl isothiocyanate, compared with actively moving nematodes. The mechanism for this quiescence-mediated resistance was investigated using fluorescein isothiocyanate (FITC). There was a reduction in the penetration of FITC in quiescent J2 of H. glycines compared with that in actively moving non-feeding J2. Furthermore, exposure of quiescent nematodes to octopamine, an invertebrate neurotransmitter, induced activity and a subsequent increase in FITC penetration compared with quiescent nematodes exposed to FITC alone. These data demonstrate that behavioural quiescence is correlated with exclusion of the compound from the body of the nematode. Finally, the entry point of FITC into the nematode was examined by the application of a veterinary cyanoacrylate adhesive to occlude either the cephalic or caudal openings of the nematodes. Nematodes glued at the anterior end showed a significant reduction in fluorescence compared with nematodes glued on the posterior end and non-glued nematodes. Thus, the entry of FITC is primarily through openings in the cephalic region. This research is the first report of behavioural quiescence correlated with reduced sensitivity to toxins in a plant-parasitic nematode, and provides insight into how these important organisms cope with stress due to exogenous toxins.

Publisher

Brill

Subject

Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3