Antioxidant enzymes in (a)virulent populations of root-knot nematodes

Author:

Molinari Sergio1

Affiliation:

1. 1Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche, CNR, Via G. Amendola 122/D, 70126 Bari, Italy

Abstract

AbstractAssays of antioxidant enzymes, including catalase, peroxidase and superoxide dismutase (SOD), have been carried out on extracts of females and second-stage juveniles (J2) of a pair of Meloidogyne incognita isolates, one virulent and one avirulent, selected on tomato, and an avirulent field population of M. incognita. Catalase and SOD activity were found to be higher in extracts of the virulent isolate SM1 when compared with the avirulent counterparts. Peroxidase activity, assayed with o-dianisidine as the substrate, was enhanced in SM1 J2 compared with the avirulent avr1 J2. Catalase isozymes were separated by isoelectrofocusing into a very acidic and a basic isoform; this latter isoform was found to be responsible for the enhancement of catalase activity in virulent populations. SOD isozyme electrophoresis patterns (IEP) of root-knot nematodes, obtained by native PAGE, showed the presence of slow- and fast-migrating bands. SOD IEP of virulent females contained a slow-migrating band with a relative mobility (Rm) on the gels slightly higher (0.52) than the corresponding band from avirulent populations (0.50). This change was confirmed with native PAGE gels loaded with extracts from J2. To check how widespread this change is in field populations of RKN, a survey of SOD IEP from 12 RKN field (a)virulent populations was carried out. The specificity of the 0.52 Rm band for virulent populations was confirmed. Separation by native PAGE of peroxidases, stained either by o-dianisidine or diamino-benzidine, showed two isoforms with no apparent differences between the populations tested.

Publisher

Brill

Subject

Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3