The somatic female gonad of Cephalobidae (Nematoda): cellular architecture and associated function

Author:

Houthoofd Wouter1,Van Gansbeke Ruben2,Borgonie Gaëtan3,Bert Wim4,Vangestel Sandra5

Affiliation:

1. 1Nematology Unit, Department of Biology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium

2. 2Nematology Unit, Department of Biology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium

3. 3Nematology Unit, Department of Biology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium

4. 4Nematology Unit, Department of Biology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium

5. 5Nematology Unit, Department of Biology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium

Abstract

AbstractThe female reproductive system of the free-living nematode family Cephalobidae is examined by means of differential interference contrast, scanning electron and fluorescent microscopy. The model nematode Caenorhabditis elegans and the predatory nematode Prionchulus punctatus are also included in this study; the former mainly to test our results with the very detailed knowledge of this model organism, the latter to provide a representative of the more distantly related Enoplea. In this comparative approach, the analysed gonad structures are discussed with respect to their functional and phylogenetic significance. The general cellular composition of the cephalobid gonad – namely an oviduct comprising two rows of four cells, a distinctly offset spermatheca consisting of 8-16 cells, and a uterus composed of distinct cell rows – differs from all known Nematoda except that of the plant-parasitic Tylenchomorpha. Despite the striking evolutionary conservation of the cellular architecture of the cephalobid gonad there is a complex subcellular specialisation, namely a significant and functionally relevant variation in myofilament organisation, both among Cephalobidae and between major groups of nematodes. We demonstrate the presence of microfilaments that vary in pattern among species and that may play an important role in egg propulsion. The phenomenon of endotokia matricida, in which eggs do not leave the female body, is found to be associated with a massive rupture of the cytoskeleton in the uterus wall. The complexity of the myofibril structure and the associated potential to propagate oocytes actively cannot be solely explained by differences in phylogenetic history, but is also linked to body diameter. In the larger Acrobeloides maximus, the proximal end of the ovary sheath is adorned with 12 distinct longitudinal bands, antibody binding positively for paramyosin, while in the smaller Cephalobus cubaensis myofilament organisation is at random.

Publisher

Brill

Subject

Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3