Ecology and Distribution of the Isopod Genus Idotea in the Baltic Sea: Key Species in a Changing Environment

Author:

Leidenberger Sonja1,Harding Karin2,Jonsson Per R.3

Affiliation:

1. Department of Marine Ecology, University of Gothenburg, Kristineberg (MEK), Kristineberg 566, SE-451 78 Fiskebäckskil, Sweden

2. Department of Marine Ecology, Carl Skottsbergs gatan 22B, SE-405 30 Göteborg, Sweden

3. Department of Marine Ecology, University of Gothenburg, Tjärnö Marine Biological Laboratory, SE-452 96 Strömstad, Sweden

Abstract

AbstractMarine isopods of the genus Idotea [I. balthica (Pallas, 1772), I. chelipes (Pallas, 1766), and I. granulosa Rathke, 1843] are common meso-grazers that enter deep into the Baltic Sea and here appear to live at their physiological limit, determined by salinity and temperature tolerance. We review available data on distribution and community ecology to assess the functional role of Idoteain the Baltic Sea and how global change may affect essential ecological interactions. Data from the last 150 years suggest an on-going shift southward for I. chelipes and I. granulosa that may be caused by a changing climate. Several studies report local extinctions and mass abundances, which may be caused by a changing food web from over-fishing and eutrophication. The three species of Idotea have clear habitat segregation in the Baltic Sea, where salinity, temperature and vegetation are the main dimensions. Idotea spp. have a central role as grazers and in communities dominated by the perennial macrophytes Fucus spp. and Zostera marina and attain impressive feeding rates on a range of epiphytes/filamentous algae (top-down effect). Idotea can have both a direct negative grazing effect on macrophytes but also an indirect positive effect by removing epiphytes. The relative role of nutritional value and chemical defence for food preference is yet unclear for Idotea. Baltic idoteids are also important prey for several fish (bottom-up effect) and fish predation may have increased following overfishing of piscivorous fish. It is concluded that Idotea is a key taxon in the Baltic Sea food web, where guilds often contain few dominant species. Changes in population dynamics of Idotea, as a function of human generated global change, may have large-scale consequences for ecosystem functions in a future Baltic Sea, e.g. the extent of vegetation cover in the coastal zone.

Publisher

Oxford University Press (OUP)

Subject

Aquatic Science

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3