Spatial Frequency Modulates the Degree of Illusory Second Flash Perception

Author:

Takeshima Yasuhiro1,Gyoba Jiro1

Affiliation:

1. Department of Psychology, Graduate School of Arts & Letters, Tohoku University, Kawauchi 27-1, Aoba-ku, Sendai 980-8576, Japan

Abstract

When a brief single flash is presented simultaneously with two brief beeps, the number of presented flashes is often perceived as two. This phenomenon is referred to as the fission illusion. Several effects related to the fission illusion have been investigated using both psychophysical and neurophysiological methods. The present study examined the effects of spatial frequency on the fission illusion. At a low spatial frequency, transient channels respond preferably; conversely, sustained channels respond preferably at a high spatial frequency. Sustained channels differ in temporal properties from transient channels and are characterized by poor temporal resolution and slow-onset responses. In our previous study, visual stimuli presented at a slow processing speed were not conducive to the fission illusion. Therefore, we hypothesized that the fission illusion would not be difficult to observe when using high spatial frequencies. The results indicated that the degree of the perceived illusory second flash was reduced when spatial frequency was high as compared to when it was is low. Furthermore, according to signal detection theory, this difference between high and low spatial frequencies was not attributed to participants’ response biases. Therefore, the fission illusion likely will not occur in conditions of slow processing speed and long response latencies in sustained channels, which respond preferably to high spatial frequency stimuli. Overall, the results indicated that the fission illusion was affected by temporal characteristics of lower-order sensory processing stages.

Publisher

Brill

Subject

Cognitive Neuroscience,Computer Vision and Pattern Recognition,Sensory Systems,Ophthalmology,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3