Haptic and Auditory–Haptic Attentional Blink in Spatial and Object-Based Tasks

Author:

Rau Pei-Luen Patrick1,Zheng Jian1,Wang Lijun2,Zhao Jingyu1,Wang Dangxiao234

Affiliation:

1. 1Department of Industrial Engineering, Tsinghua University, Beijing, China

2. 2State Key Lab of Virtual Reality Technology and Systems, Beihang University, Beijing, China

3. 3Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China

4. 4Peng Cheng Laboratory (PCL), Shenzhen, Guangdong Province, China

Abstract

Abstract Dual-task performance depends on both modalities (e.g., vision, audition, haptics) and task types (spatial or object-based), and the order by which different task types are organized. Previous studies on haptic and especially auditory–haptic attentional blink (AB) are scarce, and the effect of task types and their order have not been fully explored. In this study, 96 participants, divided into four groups of task type combinations, identified auditory or haptic Target 1 (T1) and haptic Target 2 (T2) in rapid series of sounds and forces. We observed a haptic AB (i.e., the accuracy of identifying T2 increased with increasing stimulus onset asynchrony between T1 and T2) in spatial, object-based, and object–spatial tasks, but not in spatial–object task. Changing the modality of an object-based T1 from haptics to audition eliminated the AB, but similar haptic-to-auditory change of the modality of a spatial T1 had no effect on the AB (if it exists). Our findings fill a gap in the literature regarding the auditory–haptic AB, and substantiate the importance of modalities, task types and their order, and the interaction between them. These findings were explained by how the cerebral cortex is organized for processing spatial and object-based information in different modalities.

Publisher

Brill

Subject

Cognitive Neuroscience,Computer Vision and Pattern Recognition,Sensory Systems,Ophthalmology,Experimental and Cognitive Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3