Reducing Cybersickness in 360-Degree Virtual Reality

Author:

Arshad Iqra1,De Mello Paulo2ORCID,Ender Martin2ORCID,McEwen Jason D.2ORCID,Ferré Elisa R.13

Affiliation:

1. Department of Psychology, Royal Holloway University of London, Egham, TW20 0EX, UK

2. Kagenova Limited, Guildford, GU5 9LD, UK

3. Department of Psychological Sciences, Birkbeck University of London, London, WC1E 7HX, UK

Abstract

Abstract Despite the technological advancements in Virtual Reality (VR), users are constantly combating feelings of nausea and disorientation, the so-called cybersickness. Cybersickness symptoms cause severe discomfort and hinder the immersive VR experience. Here we investigated cybersickness in 360-degree head-mounted display VR. In traditional 360-degree VR experiences, translational movement in the real world is not reflected in the virtual world, and therefore self-motion information is not corroborated by matching visual and vestibular cues, which may trigger symptoms of cybersickness. We evaluated whether a new Artificial Intelligence (AI) software designed to supplement the 360-degree VR experience with artificial six-degrees-of-freedom motion may reduce cybersickness. Explicit (simulator sickness questionnaire and Fast Motion Sickness (FMS) rating) and implicit (heart rate) measurements were used to evaluate cybersickness symptoms during and after 360-degree VR exposure. Simulator sickness scores showed a significant reduction in feelings of nausea during the AI-supplemented six-degrees-of-freedom motion VR compared to traditional 360-degree VR. However, six-degrees-of-freedom motion VR did not reduce oculomotor or disorientation measures of sickness. No changes were observed in FMS and heart rate measures. Improving the congruency between visual and vestibular cues in 360-degree VR, as provided by the AI-supplemented six-degrees-of-freedom motion system considered, is essential for a more engaging, immersive and safe VR experience, which is critical for educational, cultural and entertainment applications.

Publisher

Brill

Subject

Cognitive Neuroscience,Computer Vision and Pattern Recognition,Sensory Systems,Ophthalmology,Experimental and Cognitive Psychology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3