Affiliation:
1. School of Psychology, University of Sussex, Falmer BN1 9QH, UK
Abstract
For both humans and other animals, the ability to combine information obtained through different senses is fundamental to the perception of the environment. It is well established that humans form systematic cross-modal correspondences between stimulus features that can facilitate the accurate combination of sensory percepts. However, the evolutionary origins of the perceptual and cognitive mechanisms involved in these cross-modal associations remain surprisingly underexplored. In this review we outline recent comparative studies investigating how non-human mammals naturally combine information encoded in different sensory modalities during communication. The results of these behavioural studies demonstrate that various mammalian species are able to combine signals from different sensory channels when they are perceived to share the same basic features, either because they can be redundantly sensed and/or because they are processed in the same way. Moreover, evidence that a wide range of mammals form complex cognitive representations about signallers, both within and across species, suggests that animals also learn to associate different sensory features which regularly co-occur. Further research is now necessary to determine how multisensory representations are formed in individual animals, including the relative importance of low level feature-related correspondences. Such investigations will generate important insights into how animals perceive and categorise their environment, as well as provide an essential basis for understanding the evolution of multisensory perception in humans.
Subject
Cognitive Neuroscience,Computer Vision and Pattern Recognition,Sensory Systems,Ophthalmology,Experimental and Cognitive Psychology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献