Affiliation:
1. Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA 23606, USA
Abstract
Abstract
Optimal escape theory has proven useful for understanding the dynamics of antipredator behaviour in animals; however, approaches are often limited to single-population studies. We studied how the escape behaviour of tree lizards (Urosaurus ornatus) varied across a disturbance gradient. We also considered how sex, body temperature, and perch temperature affected their escape decisions. Both sexes exhibited similar response patterns; however, lizards in the most-disturbed habitat, as well as cooler (body or perch temperature) lizards, initiated escape earlier (but did not flee further) than other animals. Increased wariness as indicated by earlier escape suggests that frequently-disturbed, more-open localities may be stressful habitats for species like U. ornatus. In addition, because cooler temperatures limit locomotor performance capacity, escape decisions should also depend on a species’ thermal ecology. Overall, we stress the importance of multi-population approaches for capturing the variety of ways species adaptively respond to the threat of predation across habitat gradients.
Subject
Behavioral Neuroscience,Animal Science and Zoology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献