Affiliation:
1. 1Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
2. 2Univ. Grenoble Alpes, CNRS, Laboratoire d’Écologie Alpine (LECA), F-38000 Grenoble, France
Abstract
Abstract
In the last decade, eDNA and metabarcoding have opened new avenues to biodiversity studies; amphibians and reptiles are animals for which these new approaches have allowed great leaps forward. Here we review different approaches through which eDNA can be used to study amphibians, reptiles and many more organisms. eDNA is often used to evaluate the presence of target species in freshwaters; it has been particularly useful to detect invasive alien amphibians and secretive or rare species, but the metabarcoding approach is increasingly used as a cost-effective approach to assess entire communities. There is growing evidence that eDNA can be also useful to study terrestrial organisms, to evaluate the relative abundance of species, and to detect reptiles. Metabarcoding has also revolutionized studies on the microbiome associated to skin and gut, clarifying the complex relationships between pathogens, microbial diversity and environmental variation. We also identify additional aspects that have received limited attention so far, but can greatly benefit from innovative applications of eDNA, such as the study of past biodiversity, diet analysis and the reconstruction of trophic interactions. Despite impressive potential, eDNA and metabarcoding also bear substantial technical and analytical complexity; we identify laboratory and analytical strategies that can improve the robustness of results. Collaboration among field biologists, ecologist, molecular biologists, and bioinformaticians is allowing fast technical and conceptual advances; multidisciplinary studies involving eDNA analyses will greatly improve our understanding of the complex relationships between organisms, and our effectiveness in assessing and preventing the impact of human activities.
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献