Behavioural relevance of AC and DC in prey detection by the brown bullhead, Ameiurus nebulosus

Author:

Bretschneider Franklin1,Eeuwes Lonneke2,Peters Robert3

Affiliation:

1. 1Functional Neurobiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

2. 2Functional Neurobiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;, Email: eeuwes@vancouver.wsu.edu

3. 3Functional Neurobiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Abstract

AbstractA large range of aquatic vertebrates employs passive electroreception to detect the weak bioelectric fields that surround their prey. Bioelectric fields are dynamic in strength and frequency composition, but typically consist of a direct current (DC) and an alternating current (AC) component. We examined the biological relevance of these components for prey detection behaviour in the brown bullhead by means of a preference test. We gave each fish the choice between two small dipoles emitting a DC step or AC stimulus of variable strength, respectively. We used AC stimuli that were either representative for ventilatory movements by prey (1 Hz sine wave) or optimal for the ampullary electroreceptor cells (10 Hz sine wave). In an attempt to present a more complex stimulus, we also used slightly modified recordings of bioelectric prey fields, but this yielded no results. Brown bullheads prefer DC stimuli to 10 Hz sine waves if the stimulus intensity of either component is much larger. When the stimulus presentation consists of DC versus 1 Hz, most fish will choose randomly unless the stimulus intensities differ greatly. Then, they favour the component that had a higher amplitude during training. Our results suggest an intrinsic behavioural preference for very low frequency signals (<10 Hz) as well as plasticity in prey detection behaviour.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3